REACTION OF SEVEN-MEMBERED

CYCLIC BORIC ESTERS

WITH ACETONITRILE

V. V. Kuznetsov¹, Yu. E, Brusilovskii², and A. V. Mazepa¹

Keywords: acetonitrile, 5,6-benzo-1,3,2-dioxaborepane, 2-aminomethyl-1-hydroxymethylbenzene, 2-methyl-3,4-dihydro-1,3-benzoxazepine.

Five- and six-membered cyclic boric esters form 1,3-oxazolines and 5,6-dihydro(4H)-1,3-oxazines on reaction with acetonitrile [1-3]. In this paper it is shown, using 2-substituted 5,6-benzo-1,3,2-dioxaborepanes (1a-c) as examples, that the analogous conversion of seven-membered cyclic boric esters into 2-methyl-3,4-dihydro-1,3-benzoxazepines (2) and the product of their hydrolysis, 1-hydroxymethyl-2-aminomethylbenzene (3), is possible.

$$\begin{array}{c|c} & & & & \\ & &$$

1a $R = C_2H_5$; **b** $R = i-C_3H_7$; **c** $R = i-C_4H_9O$

This reaction is a new example of the chemical reactions of the poorly studied class of seven-membered cyclic boric esters. It opens a new route to the synthesis of 1,3-benzoxazepines and 1,4-amino alcohols. Thus, on stirring and slowly adding conc. H_2SO_4 (1.6 ml, 0.2 mol) to a solution of esters **1a-c** (0.01 mol) in acetonitrile (60 ml) with subsequent boiling for 3 h at about 100°C, dilution with water (100 ml), extracting with chloroform (2 × 50 ml), treatment of the aqueous phase with ice and LiOH to pH 9-10, and filtration of the precipitate, oxazepine **2** was obtained as colorless crystalline compound, which decomposed on heating above 185°C, in yields of 25% (from **1a**), 33% (from **1b**), and 24% (from **1c**).

2-methyl-3,4-dihydro-1,3-benzoxazepine (2). ¹H NMR spectrum (Tesla BS 497, CDCl₃, TMS), δ , ppm: 1.91 (3H, s, CH₃); 4.10 (2H, s, OCH₂); 4.22 (2H, s, N-CH₂); 7.19 (4H, s, H_{arom}). Mass spectrum (MX-1312, 70 eV), m/z, (I, %): [M⁺] 161 (70), [M - CH₃CNH] 119 (100). Extraction of the aqueous filtrate with chloroform (4 × 50 ml) amino alcohol **3**, containing a small amount of compound **2** was isolated (43-50% yield). Compound **3** was purified by boiling for 4 h with 30% aqueous KOH (15 ml), extraction with chloroform (3 × 10 ml), and removal of the solvent in vacuum. The yield of compound **3** by hydrolysis of the previously prepared benzazepine **2** was 70%.

¹ A. V. Bogatsky Physico-chemical Institute, Ukraine National Academy of Sciences, Odessa 65080, Ukraine; e-mail: physchem@paco.odessa.ua. ² Ufa State Oil Technical University, Ufa 450062, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 135-136, January, 2001. Original article submitted July 5, 2000.

2-Aminomethyl-1-hydroxymethylbenzene (3). IR spectrum, $_{V}$, cm⁻¹: 3450-3290 (OH, NH), 1580 and 1510 (C=C arom.). Mass spectrum, $_{m/z}$ (I, $_{0}$): [M⁺ - H₂O] 119 (100). The starting compounds **1a-c** were prepared by reaction of the corresponding acyclic boric esters with 1,2-di(hydroxymethyl)benzene by a known method [4].

2-Ethyl-5,6-benzo-1,3,2-dioxaborepane 1a (oil) was isolated in 85% yield. ¹H NMR spectrum, δ , ppm: 0.70 (3H, t); 0.87 (2H, q); 5.01 (4H, s); 7.22 (4H, s). Mass spectrum, m/z, (I, %): $[M^+]$ 176 (95), $[M - C_2H_5]^+$ 147 (52), $[M - C_2H_5 - HBO]^+$ 119 (53), $[M - C_2H_5 - CH_2O]^+$ 117 (73).

2-Isopropyl-5,6-benzo-1,3,2-dioxaborepane 1b was obtained in 69% yield; mp 60-62°C (benzene).
¹H NMR spectrum, δ , ppm: 0.83 (7H, s); 5.00 (4H, s); 7.21 (4H, s). Mass spectrum, m/z (I, %): [M⁺] 190 (67), [M - C₃H₇] ⁺ 147 (59), [M - C₃H₇ - CH₂O] ⁺ 119 (25), [M - C₃H₇ - HBO] ⁺ 117 (48), [M - C₃H₅B(OH)₂] ⁺ 104 (100). During the synthesis of esters **1a,b** the formation of a small amount of boron containing polymer (less than 10% of the mass of the principal product) was observed.

2-Isobutoxy-5,6-benzo-1,3,2-dioxaborepane 1c (oil) was obtained in 70% yield. ¹H NMR spectrum, δ , ppm: 0.82 (6H, d); 1.71 (1H, m); 3.51 (1H, m); 4.85 (4H, s); 7.22 (4H, s). Mass spectrum, m/z (I, %): $[M]^+$ 220 (13), $[M - C_3H_7]^+$ 177 (100), $[M - C_3H_7 - CH_2O]^+$ 147 (50), $[M - C_4H_9OB(OH)_2]^+$ 104 (63).

REFERENCES

- 1. V. V. Kuznetsov, Abs. Ukraine Conf. "Chemistry of Nitrogen Heterocycles" [in Ukrainian]. 1997, 50.
- 2. V. V. Kuznetsov, Zh. Org. Khim., 30, 1571 (1994).
- 3. V. V. Kuznetsov and V. N. Shvets, *Zh. Org. Khim.*, **33**, 1577 (1997).
- 4. V. V. Kuznetsov, A. V. Mazepa, and L. V. Spirikhin, Khim. Geterotsikl. Soedin., 1418 (1998).